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Who are we?



Lines of Code Lustre 2.15

Aeon Amazon Atos CEA

Cornelis Networks DDN-Whamcloud EMC GSI

HPE/Cray IU Intel LLNL

Linaro Nvidia ORNL Other

SUSE Sanger Seagate Stanford

• Designed for HPC: data extension of the compute platform

• OpenSFS provides overall directions and a forum for 
discussion among users

• DDN is the lead contributor to  Lustre

• User meetings in Europe organized by EOFS

• User meetings in Asia organized by DDN

DDN an Open-Source Driven Company

DDN

SuSE

Linaro

ORNL

HPe

Lustre Open-Source Parallel FRile system (OpenSFS)



576 DXH: 4608 H100 GPU

NDR400 IB Compute and Storage

Storage:

48 AI400NVX2

EXAScaler 6

12 PB flash

4.3 TB/s  Read

3.1 TB/s Write

DDN Hot node for Accelerated AI Training

EOS NVIDIA Flagship System

EOS IS THE THIRD-GENERATION FLASGHIP DGX SUPERPOD



HPC for science: AI at

• IDRIS is driving excellence in 
scientific research for modeling 
and intensive numerical 
computation which requires 
seamless scaling and enterprise 
resilience.

• Supplied as a service 
infrastructure, this is next 
generation class systems used for 
the refinement of AI algorithms at 
large scale.

Centre National de la  Recherche Scientifique

Jean Zay - World Class AI system 

• 1000,000 GPU hours of 
learning



A – EuroHPC Infrastructures powered by DDN

               Leonardo       Meluxina       Discoverer                Vega               Deucalion

B – EuroHPC Research Programs and DDN
• EuroHPC design of next-Gen IO system
• AI-automated features extractions from Satellite Images
• Nuclear Fusion code optimization

C – DDN R&D Spending in Europe
• Significant portion of our WW turnover is spent on R&D
• 25 persons R&D in EU
• France focused on Software Platforms

DDN AT SCALE – DDN IN EUROPE

© DDN 2023

DDN  European Collaboration Framework



Why do we matter?



• 2025: Data acquisition devices are 
ubiquitous
• 2025: Computing capabilities are ubiquitous

• 2025+: Data management at scale is scarce

As computing is becoming a commodity, the 
bottleneck to time-to-science has shifted from 
compute to data management.

Understanding Data at Scale: Commodity and 
Scarcity



DDN AI400X3. NEXT-LEVEL AI DATA PLATFORM 

NVIDIA is the launch customer for AI400X3 with multiple deployments 
globally in 2025

70% Faster AI Data Throughput

40% DataCenter Savings

PROVEN BY NVIDIA



• A Storage System typically represents 5% of the 3 years 
Capex & Opex budget of an AI system for Deep 
Learning/LLM training 

• IO Wait and associated elements of the training process 
can consume up to 43%1 of runtime

• How can the efficiency architecture and consumption of 
storage resources impact overall productive output of 
this System?

Spend is Large, Risks are High. How can Storage Help?

Large AI Supercomputer Capex + Opex

Datacenter, 
Power & 
Cooling

GPU/IPU/CPU
Infrastructure

Networking

1 (Maeng et al., 2021).

https://cs.stanford.edu/people/trippel/pubs/cpr-mlsys-21.pdf


• Storage is only 3%, but can 
dramatically impact the 
datacenter efficiency 

• Fast DDN storage cuts down 
the idle/waiting time for 

GPUs creating more 
productive output from the 

datacenter 

Power Consumption Breakdown (PUE=1.25)

Accelerators 

(GPUs)
60%

CPUs & DRAM

8%

NVLink / 

NVSwitch …

Networking 

(NICs/Switches)
4%

Storage 

(drives/controlle
rs)

3%

Other IT 

(mgmt/fans/overhead
s)…

Cooling 

(CDU/CRAH/chillers)
12%

Power 

Conversion & 
UPS

4%

Lighting & Misc 

Facilities…



DDN Enhances Data Center ROI and Profitability by 30% 

$1 invested in NVIDIA can translate  
to $5 in CSP revenue over 4 years

Training Time

Training Time
+30% ROI 

Value: $28m

Data Load

Checkpoint

Model Load

Classical Computing

Accelerated Computing

Accelerated Computing
Full Stack

$1 invested in NVIDIA and DDN can translate to $6.5 in 
data center revenue over 4 years (a 30% increase)



Community Knowledge



• Brought visibility to our community

o IO as part of the performance equation

• Brought transparency among solutions

o Mutualization of quantitative data across many sites

o Fact-Check vendors claims
▪ DDN has been supporting the initiative this its inception: if this is not in IO500, it's fishy

• Designed by performance experts

o On many aspects IO500 is way better than Top500

IO500: IO patterns vs Storage Systems





• IO500 is based on reproducibility of 'meaningful patterns'

• Workload is an evolving landscape

o Designed for HPC workload

• What used to matter can change

o High emphasis on Metadata

• What's about I/O libraries?

IO500 Design Principles



From System Characterization to workloads Profiling

“Understanding and Improving Computational Science Storage Access through Continuous Characterization”
PHILIP CARNS et al.
Argonne National Laboratory
2011, Journal Proceedings of 27th IEEE Conference on Mass Storage Systems and Technologies

99% of time IO system stressed less than 33% of its peak bandwidth
70% of time IO system stressed less than  5% its peak bandwidth

M
e

su
re

s 
a

u
 A

rg
o

n
e 

N
a

ti
o

n
al

 L
a

b
.



• Bottom-Up Approach
o Addressing the meaning full pattern question
o End-Users push data

• Per application approach
o Different settings of the same application generate different IO patterns
▪Parallelism, Check-pointing

• Relies on Standard tool
oDarshan (Phil. Carnes, Argonne National Lab), de facto standard for I/O tracing
oAlternative tracing system exists, trace converters are welcomed (OTF2)

IO Patterns of key Scientific Applications

What is a Meaningful Pattern?



• Presented at SC'23
oJGU Group:  Prof. André Brinkmann , Nafiseh Moti, Marc-André 

Vef, Reza Salkhordeh

oPhilippe Deniel CEA , France
oJesus Carretero, UCM3, Spain
oPhilip Carns, Argonne National Lab., USA
oDDN

• Moti, N., Brinkmann, A., Vef, M. A., Deniel, P., Carretero, J., Carns, P., ... & Salkhordeh, R. 
(2023, November). The I/O Trace Initiative: Building a Collaborative I/O Archive to Advance 
HPC. In Proceedings of the SC'23 Workshops of The International Conference on High 
Performance Computing, Network, Storage, and Analysis (pp. 1216-1222).

• https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf

hpcioanalysis.zdv.uni-mainz.de

EuroHPC initiative: IO-Sea + Admire

https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
https://salkhordeh.de/publication/trace-pdsw/trace-pdsw.pdf
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• Algorithms are mostly optimized for compute 

oBetter exposition of  I/O patterns will eventually 
lead to better applications

• End-Users do no to fully grasp the impact of 
their parameterization

oData volume is not the only, and not the most 
important, explanatory  variable

• Sys. Admin will have more detailed information

o Configuration of the system

• Vendor use public data to design their storage 
solutions

HPC IO Analysis Needs 
You!!



- Analysis of over 23,000 Machine Learning Jobs

Machine Learning is Write and Read Intensive

• “Most ML jobs are perceived to be read-intensive 
with a lot of small reads while a few ML jobs also 
perform small writes.”

• “Our study showed that ML workloads generate a 
large number of small file reads and writes…”

Average Number of Calls per Job

<1M Read 1-10M Read 10-100M Read 100M-1G Read >1G Read

<1M Write 1-10M Write 10-100M Write 100M-1G Write >1G Write

Small 
Write
s

Small
 
Read
s

Characterizing Machine Learning I/O Workloads on Leadership Scale HPC Systems 
https://arnabkrpaul.github.io/publications/mascots21.pdf



Prediction Accuracy – Improve accuracy by lowering learning rate from a 
checkpoint 

Multi-System Training - continue training model across different nodes or 
clusters/cloud

Transfer Learning – if goals change, start afresh from a checkpoint

Better Fine Tuning - pick out less trained states to restart new experiments

Early Stopping - For large models, without sufficient regularization, the 
error on the evaluation dataset can start to increase. 

• → need to go back and export the model that had the best 
validation error. 

DDN Accelerates the Thousands of Checkpoints Needed in AI

Number of Epochs

E
rr

o
r Stop training 

here!



Checkpoints is intrinsic to Deep Learning Training

• Non-linear convergence – local minimum exist where the 
next epoch degrades accuracy but on the long run accuracy 
can still be improved

• Over-fitting to detect Sweet-Spot – some overfitting is 
mandatory to ensure that the global minimal has been 
reached

• Rolling-back to the Global minimum – once the detection 
of the global minimum has been assessed, rolling back to 
correct model state requires parsing the checkpoint history

Number of Epochs

E
rr

o
r

Stop training: is it a 
local minimum or the 

global minimum?



• Without DDN Hot Nodes technology, Multi-Epoch Training 
consumes storage and network bandwidth with every GPU 
systems repeatedly pulling data.

• With DDN Hot Nodes, we automatically cache data sets on 
internal NVMe devices, freeing the network and storage from 
load and accelerating the whole training process

Optimizing Multi-Epoch Training
Conventional

HOT NODES

Each phase reads same data from network

First phase caches data from 
network to node local NVMe

GPU

CPU

NET

Second phase reads at 2x 
speed from local NVMe



• Address the loophole of AI

• AI is complicated

o Field is constant evolution
▪From read driven to write driven

o Out of core aspect

• Training and inference subtleties

• Training is extremely expensive

MLPerf Storage for AI Workloads

MLPerf Storage targets AI



Metric V0.5 V1.0 V2.0

# submissions 24 150 231

# submitters 5 17 ~30

Measures how fast storage systems can supply training data when 
a model is being trained. 
MLPerf Storage emulates GPU performance, specifically assessing 
the I/O components of AI training protocols.
A sleep() function is called to simulate the compute part. No real 
GPU is needed. 

MLPerf Storage v2.0  - Workloads for training



MLPerf Storage v2.0  - Workloads for training
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The MLPerf  name and logo are trademarks of MLCommons 

Association in the United States and other countries. All 
rights reserved. 



MLPerfTM Storage v2.0 – Comparison w/ X2T (throughput) 

• Multi. Host - CLOSED

Training 
H100

Unet3D
(GB/s)

Cosmoflow
(GB/s)

Resnet50
(GB/s)

X2T (v1.0) 103 96 35

X3 (v2.0) 123 114 71

The MLPerf  name and logo are trademarks of MLCommons 

Association in the United States and other countries. All 
rights reserved. 
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Appliance
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Throughput

G
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Higher is better - Read Throughput 

Multiple nodes - Training

X2T MLPerf v1.0 (GB/s) X3 MLPerf v2.0 (GB/s)

Performance improvement due to better tunings:
- Leverage logs from v1.0 from YanRong/other submitters for MLPerf Storage 

tunings
- Zero lustre preload (important improvement for epoch 0)
- RPC_In_flight=1/client (latency limited workload)

Performance improvement due to better appliance throughput:



Energy and Performance



Performance and Power: looking from the PDUs

EDGE



Performance and Power: I/O Pattern impact

EDGE

I/O pattern idle 
Power 

(Watt)

Peak Power 
(Watt)

BW 
(GB/s)

IOPS

Write sequential 

4M

430 564 40 10K

Write sequential 

4KB

430 565 35 9260K

Write Random 

Write 4BK

430 470 1.2 320K

Write Single 

Shared File 

Random 4KB

430 470 0.03 7500

Read sequential 

4M

430 510 48 12K

Read sequential 

4k

430 510 25 6.5M

Read Random 4k 430 455 1.7 430K



Performance and Power: the Whole Picture

EDGE
8-A100 GPU node. Courtesy of G-CORE lab

NVIDIA Reference architecture: 64 GPU per Storage appliance
• GPU 16-24KW
• Storage 0.8 to 1.3 KW 

Fast storage saved 8KW on storage, and save 1.7MW of GPU



Performance and Power: the Whole Picture

EDGE

0%

1%

1%

2%

2%

3%

3%

4%

4%

5%

Fast storage ES400NVX2 Standard Storage

time overhead (hourly checkpoint)

Checkpointing (e.g., Adam, most common for large models):

176 billion parameters * 2 (moments) * 4 bytes/moment (FP32) = 1408 GB (1.408 TB)

Fast storage: 40 GB/s write

Standard storage: 10 GB/s write

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

Fast storage ES400NVX2 Standard Storage

Energy surconsumption  (Watt)  Storage 

only 



Data and Metadata



Data and Metadata

41 /

Metadata : data describing data

● data attributed (and extended attribute)

→ size, user access rights, date of modification (ls –l)

!= pointer (does not allow to locate data on the storage system)

 

Metadata are at the core of the scalability challenge

→ metadata are accessed frequently and massively, e.g. ls –l in a directory 

with many file. No data access but many metadata accesses



Blurring Borders: Metadata & Data

• AI Data tend to be metadata heavy
o Every frame of an autonomous car is 

annotated by 100s of metadata
• Metadata allow to structure the Data-lake
o Prevent Data-lake to turn in Data-Swamp

• Query-able Metadata: Data-LakeHouse
o Data Lake + Data Warehouse



Fast Object Listing + SQL = Dataset selection

-- Satellite images by time range

Sql> SELECT * FROM Copernicus WHERE date >= '2025-01-01' AND 

date < '2025-02-02';

-- Satellite images for a given area and time range 

Sql> SELECT * FROM Copernicus WHERE date >= '2025-01-01' AND 

date < '2025-02-02' AND latitude BETWEEN min_latitude AND 

max_latitude AND longitude BETWEEN min_longitude AND 

max_longitude;

-- Satellite images for a given area and time range and 

a specific feature

Sql> SELECT * FROM Copernicus WHERE date >= '2025-01-01' AND 

date < '2025-02-02' AND latitude BETWEEN min_latitude AND 

max_latitude AND longitude BETWEEN min_longitude AND 

max_longitude AND water_body_presence > 0.85;

0
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DDN is 100x faster



AWS S3 
Express



Latency



46

Technologies tend to stack

50-100 ns

1-10 ns

5 ms

100 µs

50 sec

IB: +1-2 µs



Key Performance metrics: devices

Metrics Hard Drive (HDD) Flash (NMVe) PCI gen4

Bandwidth 0.2 GB/s 8 GB/s

Latency 4 ms 0.02ms

Capacity 22 TB 60 TB (QLC)

Price $14.3 / TB $50 / TB



Call Stack

48 /
Source: P. Olivier et J. Boukhobza

FUSE.KO

Management of memory cache 
and network FS communication 
protocol

FS 
Client



Overhead associated to Call Stack

Source: P. Olivier et J. Boukhobza



• Rapid data retrieval, enables 
real-time interactions critical 

for RAG apps

• Enhanced User Experience: 
empowers seamless, high-

performance workflows, 
improving end-user 

satisfaction and business 
outcomes.

25X Faster Response Times for Data Access
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140

Infinia Competition

Time to First Byte (Lower is Better)

25x lower 
latency



• DDN Infinia running on Public 
Cloud outpaces Native Object 
Storage for the most common 

operations

Small Object is latency driven
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From Applications to 
Workflows



What does the End-to-end data journey involve?

End-to-end data journey

CAPTURE

Millions of digital 
images captured

PREPARATION

Cleansing and 
labeling of data

PROCESS

Model training
Computation and 

analysis

ANALYZE

Examine & 
Explore results 

for action

ARCHIVE

Store data for 
long-term 

compliance

Example: Life Sciences – Drug Discovery Application



AI data life cycle goes beyond training

Ingest/Data Prep Data Load Model Load Checkpoint Model Distribution

Distributed 
Training

Training

Load tokens and images for each 
training Epoch

Load model into GPU prior to start 
and restart

Save model to persistent storage for 
many reasons

Up to 60% Up to 5% Up to 43%
% of time that can be consumed 
by data movement



• Without DDN Hot Nodes technology, Multi-Epoch Training 
consumes storage and network bandwidth with every GPU 
systems repeatedly pulling data.

• With DDN Hot Nodes, we automatically cache data sets on 
internal NVMe devices, freeing the network and storage from 
load and accelerating the whole training process

Optimizing Multi-Epoch Training
Conventional

HOT NODES

Each phase reads same data from network

First phase caches data from 
network to node local NVMe

GPU

CPU

NET

Second phase reads at 2x 
speed from local NVMe



Roof line for Workflows 1/2

DIGITAL TWIN

EDGE

Each Stage has its own arithmetic intensity



Roofline model for Coarse Grain Characterization

Intrinsic Application Characteristics Application + Platform Characteristics



Roof line for Workflows 2/2

DIGITAL TWIN

EDGE

Lustre job stats

has 

Stage roofline

Ding, Nan, Brian Austin, Yang Liu, Neil Mehta, Steven Farrell, 
Johannes P. Blaschke, Leonid Oliker, Hai Ah Nam, Nicholas J. Wright
and Samuel Williams. 

"A Workflow Roofline Model for End-to-End Workflow Performance Analysis."
 SC24, https://crd.lbl.gov/assets/Uploads/Workflow_roofline-6.pdf



Upcoming I/O Patterns: 
Inference



A day in the life of a Prompt

Query 1 

Response 1 

Return



Transformer Workflow – Tokens >> Prefill >> Decode >> Output

LLM Weights

PreFill
T
1

T
2

T
3

T
4

E
O
SPrompt

To
Ke

ni
ze

r

13718 480 14567 827 14567System 
Prompt

User  
Prompt

D
e

-T
o

Ke
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ze
r

"A”,  "GPU”,  "(“,  “Graphics”, 

"Processing”, "Unit)”, "is”,  "a,  
"specialized”,  "processor”,  
"designed”,  "to" , "accelerate" 

Output

DecodePreFill

What Is A GPU ?

4827 382 261 47969 3901

Process the entire input sequence 
to initialize the KV cache for 
efficient autoregressive decoding.

Autoregressive process that generates each token based on previous Tokens.

Compute bound Memory Bound



A memory mechanism inside LLMs that stores Key (K) and 
Value (V) representations of previous tokens.

T1 T2 T3 T4 T5

Queries (Q)  Caries the actual information or 
"knowledge" of a token, which is then weighted 
by the relevance scores (from QxK)

Why It Matters— Helps with Token Generation. Captures the Computation – semantics, position, attributes
• Autoregressive decoding, every new token depends on previous ones.
• Prevents precomputation of all past tokens, making token generation much faster and more efficient.

Key Challenge:
•Memory-Hungry - Grows sequence length and batch size.
•Primary Consumer of GPU memory

What is a KV cache?



SLAs under consideration

Query

Time to Generate 
First Token (TTFT)

TTFT ITL ITL ITL ITL

E2E Latency

Input sequence length 
of tokens (ISL) are fed 
into a model.

LLM generates output 
sequence length (OSL) 
of tokens one at a 
time.

• Time it takes for the model to 
generate the first token after 
receiving a request. Prefill.

• Compute-bound

• Inter-token Latency (ITL) is an average time 
between output tokens.

• Critical when full response has to be processed 
further: guardrails, tool calling, Agent Calling

• Memory-bound



Memory for Model (14GB)
Llama 3.2 – 7B 

KV Cache 

Batch Size Model Memory 
(GB)

KV Cache 
Memory (GB)

Total 
Memory 

(GB)

KV Cache % of 
Total

1 14 4 18 22.2%

2 14 8 22 36.4%

3 14 12 26 46.2%

4 14 16 30 53.3%

NVIDIA H100 – 80 GB of Memory

Batch Size = 4, Seq Len - 2048

53.3%

GPU Memory gets filled up past

Filling up fast!!

Memory Profile - 4 Users,  Small Query, small 
model, Quantized 



Feature How Infinia Helps

Disaggregated Cache Infinia stores and serves the cache across GPUs

Parallel Access Multiple GPUs can read/write to the cache simultaneously

Low Latency NVMe-oF ensures fast access to cached data

Scalable Infinia scales horizontally and vertically

Fault Tolerance KV cache state persists even if GPUs fail

Efficient Caching Tiered storage keeps "hot" data close to GPUs

Infinia’s Low Latency KV Architecture Make it Ideal for Managing Distributed KV Securely



DDN Infinia KVCache Acceleration for Inference

WITH OTHERS WITH DDN

GPU
Memory

Host 
Memory

Local SSD

Shared Network 
Storage

Dynamo Distributed KV 
Cache Manager

Offloading KV Cache to 
cost effective storage 

GPU
Memory

Host 
Memory



2. Models are bigger,  wider context window & Attention Heads  – More GPU memory and KV Cache Size 

Model Name Organization Year 
Introduced

Model Size # Parameters 
(B)

Context 
Window 
(tokens)

# Attention 
Heads

GPT-4 Turbo OpenAI Late 2023 Large ~1,000* 128,000 96* (est.)

Gemini 1.5 Pro Google 2024 Large Undisclosed* 1,000,000+ Undisclosed

Claude 3 Opus Anthropic 2024 Large Undisclosed* 200,000 Undisclosed

Llama 3 70B Meta 2024 70B 70 8,192 64

Mistral Large Mistral AI 2024 Large Undisclosed* 32,000 Undisclosed
Yi-34B 01.AI Late 2023 34B 34 32,000 52

Qwen 2 72B Alibaba 2024 72B 72 128,000 72
DBRX Databricks 2024 132B 132 32,000 96
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